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A B S T R A C T

Physics-based solar cycle predictions provide an e�ective way to verify our understanding of
the solar cycle. Before the start of cycle 25, several physics-based solar cycle predictions were
developed. These predictions use flux transport dynamo (FTD) models, surface flux transport
(SFT) models, or a combination of the two kinds of models. The common physics behind these
predictions is that the surface poloidal fields around cycle minimum dominate the subsequent
cycle strength. In the review, we first give short introductions to SFT and FTD models. Then we
compare 7 physics-based prediction models from 4 aspects, which are what the predictor is, how
to get the predictor, how to use the predictor, and what to predict. Finally, we demonstrate the
large e�ect of assimilated magnetograms on predictions by two SFT numerical tests. We suggest
that uncertainties in both initial magnetograms and sunspot emergence should be included in such
physics-based predictions because of their large e�ects on the results. In addition, in the review
we put emphasis on what we can learn from di�erent predictions, rather than an assessment of
prediction results.

1. Introduction
The solar cycle is becoming one of the most important natural cycles (Choudhuri, 2015) since the Sun’s activity

dominates Earth’s space environment, which plays an essential role in our technological society. Solar cycles vary
in both amplitude and length. As a consequence, solar cycle forecasting is becoming a necessity for some practical
needs, e.g., the planning of space missions. Since there are still many outstanding questions concerning the physics
behind the solar cycle, developing reliable solar cycle prediction schemes remains an important aspect of research in
solar-terrestrial physics and astrophysics.

The last solar cycle, cycle 24, has been the weakest during the past century. This provides a rare opportunity to
test the existing prediction methods. The reviews by Pesnell (2008); Nandy (2021) classify the methods into physics-
based models, precursors, spectral, machine learning, statistical methods, and so on. The latter 3 methods can be
categorised together as extrapolation methods, as suggested by Petrovay (2020). The unusually weak cycle 24 has
confirmed that the precursor method based on the polar field (or axial dipole field) at cycle minimum has the highest
predictive skill. Polar field measurements by direct observations (e.g., see Figure 2 of Jiang, Chatterjee and Choudhuri
(2007) and Figure 10 of Jiang, Wang, Jiao and Cao (2018)) and by geomagnetic proxies (Ohl and Ohl, 1979; Wang and
Sheeley, 2009) alike indicate that the polar field (or axial dipole field) at cycle minimum has a good correlation with
the subsequent cycle strength. This correlation is essential in the context of the review. In the following, the default
correlation denotes this one.

The correlation, on the one hand, adds a piece of evidence that the solar dynamo is the Babcock-Leighton (BL)
type based on the notion that the surface sunspot emergence provides the poloidal seed field for the subsequent solar
cycle. In contrast, fields and sunspots appearing on the surface are just a byproduct of the classical mean-field dynamo
(Parker, 1955; Steenbeck and Krause, 1966). So in these models a tight correlation between the polar field at cycle
minimum and the subsequent cycle strength might happen as presented by Figure 19 of Charbonneau (2020)), but is
not necessary. The polar field in the classical mean-field dynamo is not due to the decay of sunspots on the surface,
and the polar field in the correlation results from the observable decay of sunspots. On the other hand, the correlation
provides a constraint on the BL-type dynamo. The poloidal and toroidal field generation layers are spatially separated.
The correlation constrains the transport time of the surface poloidal field to the layer of the toroidal field generation.
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The transport time should be less than a cycle. The physics-based predictions include the prediction schemes based on
the BL-type dynamo model with data assimilation. The first dynamo-based solar cycle predictions appeared during
cycle 23/24 minimum (Dikpati, de Toma and Gilman, 2006; Dikpati and Gilman, 2006; Choudhuri, Chatterjee and
Jiang, 2007; Jiang et al., 2007).

Solar cycle 25 started at the end of 2019 (Nandy, Bhatnagar and Pal, 2020). Several years before the cycle min-
imum, Cameron, Jiang and Schüssler (2016) carried out a study to predict the polar field at cycle minimum, which
was then used to predict the amplitude of cycle 25. This demonstrates that there is no need to wait until the cycle
minimum to make the prediction. Independently, Hathaway and Upton (2016) developed a similar method to predict
the amplitude of cycle 25. Later further models with similar methods, e.g., Iijima, Hotta, Imada, Kusano and Sh-
iota (2017); Jiang et al. (2018); Upton and Hathaway (2018), were suggested. In contrast to the polar field precursor
method, which directly uses the observed correlation between the polar field at cycle minimum and the subsequent cy-
cle strength (Svalgaard, 2020), the physics of the polar field generation is included in such kind of schemes by surface
flux transport (SFT) models. Hence we also regard models of this type as physics-based predictions. Besides SFT-
based predictions, dynamo-based cycle 25 predictions have also been developed, e.g., Bhowmik and Nandy (2018);
Labonville, Charbonneau and Lemerle (2019); Guo, Jiang and Wang (2021). Figure 4 of Labonville et al. (2019) and
Figure 5 of Nandy (2021) show the convergence in physics-based predictions of cycle 25 amplitudes, although some
discrepancies still remain. Since there are several physics-based models available the question arises, what do they
have in common, and what are the di�erences among these models? This review aims to compare some physics-based
prediction models of cycle 25 from a methodological point of view.

The paper is organized as follows. A brief introduction to the physical models, namely SFT models and flux
transport dynamo (FTD) models are given in Section 2. Section 3 presents a comparison of 7 physics-based prediction
models of cycle 25. Section 4 focuses on a comparison of the e�ects of the magnetograms used as the initial condition
on predictions. Section 5 concludes the paper.

2. A brief introduction to the physical models used by physics-based predictions
2.1. Surface flux transport models

SFT models were initiated in 1980s (e.g. DeVore, Boris and Sheeley, 1984; Sheeley, DeVore and Boris, 1985;
DeVore and Sheeley, 1987; Wang, Nash and Sheeley, 1989). The original idea can be traced back to Leighton (1964).
The models describe the evolution of the large-scale magnetic field, which is assumed to be purely vertical Br, over
the solar surface. The sunspot group emergence provides the flux source S(✓,�, t). The flux of sunspot groups then
evolves under the e�ects of a random walk due to supergranular flows, which are usually approximated by turbulent
di�usion (Leighton, 1964), and the e�ects of large-scale surface flows including the meridional flows �(✓,�, t)e✓ and
di�erential rotation u(✓,�, t)e�. In most SFT models, both large-scale flows are taken as axisymmetric and time
independent, namely, �(✓)e✓+u(✓)e� and u(✓) = RÊ sin ✓⌦(✓), where ⌦(✓) is the di�erential rotation. The governing
equation is the radial component of the MHD induction equation at r = RÊ under the assumptions that B✓r=RÊ

=0,
B�r=RÊ
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)r r=RÊ

=0 as follows:

)Br
)t

= * 1
RÊ sin ✓

)
)�

�
uBr

�
* 1

RÊ sin ✓
)
)✓

�
�Br sin ✓

�

+ ⌘s

L
1

R2
Ê sin ✓

)
)✓

0
sin ✓

)Br
)✓

1
+ 1

R2
Ê sin2 ✓

)2Br
)�2

M

+ S(✓,�, t), (1)

where ✓ and � are heliographic colatitude and longitude, respectively. And ⌘s is the uniform turbulent di�usivity.
Appendix of DeVore et al. (1984) provides another method to derive the SFT equation through spatially averaging
the radial component of the induction equation. Past studies have shown that SFT simulations are an e�ective way to
understand the polar field evolution (e.g., Wang, Jiang, Zhang and Wang, 2020).

Two groups of parameters determine the evolution of the large-scale magnetic field Br(✓,�, t), including the polar
field. One is the transport parameters over the surface, including the strength of the turbulent di�usivity ⌘s and profiles
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of the di�erential rotation ⌦(✓) and meridional flow �(✓). The other group of parameters is relevant to the flux source,
namely, the magnetic field distribution of sunspot emergence.

There are fewer disagreements on the di�erential rotation owing to global helioseismology. But the turbulent di�u-
sivity and meridional flow are less constrained by observations. Table 6.2 of Schrijver and Zwaan (2000) summarizes
various attempts to measure ⌘s from observations. The values fall in the range 1.1-6.0 ù1012 cm2s*1. Chae, Litvinenko
and Sakurai (2008) show that the magnetic di�usivity originating from turbulence is determined by the characteristic
length scale. For a typical size of a supergranule, a turbulent di�usivity ⌘s is about 2.0ù1012 cm2s*1 estimated based
on the scaling relation of the turbulent cascade. Measurements of turbulent di�usivity in direct numerical simulations
fall in the range 1.1-3.4ù1012 cm2s*1 based on magnetic energy decay rates (Cameron, Vögler and Schüssler, 2011),
although some simulations are against treating the magnetic field as a passive scalar, e.g., Thaler and Spruit (2017)
who regard that “retraction” below the surface driven by magnetic force is an e�ective mechanism of flux cancellation.

Instead of the di�usion approximation of the supergranular random walk, Upton and Hathaway (2014) introduce
a purely advective surface flux transport model. Supergranular flows are modeled explicitly by using vector spherical
harmonics. A spectrum of spherical harmonics is used to create convection cells that reproduce the observed spectral
characteristics. The spectral coe�cients were evolved at each time step to give the cells finite lifetimes. The method
introduces stochastic variations in flux transport.

The meridional flow shows divergent profiles based on three major methods, namely, feature tracking, direct
Doppler measurements, and helioseismology. The divergence mainly results from the systematic e�ects in di�er-
ent methods (Mahajan, Hathaway, Muñoz-Jaramillo and Martens, 2021) and the time variation in the meridional flow
itself within each solar cycle primarily due to the inflows toward active regions (Chou and Dai, 2001; Cameron and
Schüssler, 2010). Petrovay, Nagy and Yeates (2020) demonstrate that the parameter ⇧ = RÊ⌘s_�� plays an essential
role in the SFT models, where

�� =
d�
d�

›�=0 . (2)

�� corresponds to the divergence of the meridional flow at the equator. The parameter ⇧ shows the competition of
flux transport between the poleward meridional flow and equatorward di�usion near the equator, which determines
the cross-equatorial flux. Direct Doppler measurements (e.g., Ulrich, 2010) and helioseismology (e.g., Gizon and
Rempel, 2008; González Hernández, Kholikov, Hill, Howe and Komm, 2008; Zhao, Kosovichev and Bogart, 2014;
Liang, Gizon, Birch, Duvall and Rajaguru, 2018) show that �� falls in the range Ì0.8-Ì1.4 ms*1deg*1. The value
depends on the solar cycle phase. It is larger at cycle maximum. Temporally averaged results based on the magnetic
feature tracking (e.g., Komm, Howard and Harvey, 1993; Hathaway and Rightmire, 2011; Mahajan et al., 2021) show
that �� falls in the rage Ì0.4-Ì0.6 ms*1deg*1. Recently Mahajan et al. (2021) show ��=Ì0.95 based on an improved
magnetic feature tracking method. Figure 3 in Petrovay et al. (2020) presents 4 profiles used by SFT models. The profile
used by Wang (2017), namely, 13 tanh(�_6˝) cos2 �, has the �� value of 2.17 ms*1deg*1, which is much larger than
all of the available meridional flow measurements. In most other SFT simulations, �� is close to 0.5 ms*1deg*1. A
collection of di�erent �� values derived by observations and used by SFT simulations is presented in Table 1. Please
note that if the analytical profile of the flow from observations is not given in a publication, the �� value is measured
based on the corresponding figure. Such values have limited accuracy and hence the symbol “Ì” is used in Table 1.

The distribution of flux source was usually treated by bipolar magnetic regions (BMRs) approximation in SFT
models. The BMR approximation means that an AR is simplified as a leading and following bipolar with symmetric
configuration but opposite polarities. The area, location (latitude and longitude), and tilt angle are the key parameters
to determine flux distribution. The number of BMRs is proportional to the cycle strength. The tilt angle is usually
derived based on Joy’s law. The traditional way to deal with the parameters makes the SFT process a linear one, which
means that the generation of the polar field at cycle minimum is proportional to the cycle strength. This is not consistent
with observations, see Figure 3 of Jiang et al. (2007) and Figure 5 of Muñoz-Jaramillo, Dasi-Espuig, Balmaceda and
DeLuca (2013). Studies during the past decade have revealed that both nonlinear and stochastic mechanisms resulting
from the flux source parameters are involved in the polar field evolution.

Jiang, Cameron and Schüssler (2014) determine the tilt scatter using the observed tilt angle data and study e�ects
of this scatter on the evolution of the solar surface field using SFT simulations. The results show that the uncertainty
of the axial dipole field caused by the tilt scatter is over 30% of the average strength. The sunspot groups which emerge
closer to the equator have a larger contribution to the axial dipole strength than that emerge at higher latitudes because
the lower latitude sunspot emergence tends to contribute more net cross-equatorial flux. The latitudinal dependence of
sunspot groups’ contribution to the axial dipole strength obeys a Gaussian profile. The result is further demonstrated
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Table 1
A collection of different �� values derived by observations and used by SFT simulations.

Reference Method �� value (ms*1deg*1)
Figure 1b of Gizon and Rem-
pel (2008)

Time-distance helioseismology,
MDI data, near the solar surface,
1996-2002

Ì1.15

Figure 3a of Zhao et al.
(2014)

Time-distance helioseismology,
HMI data, a depth of 0-1 Mm,
2010-2012

Ì0.8-Ì1.23

Figure 8f of Liang et al.
(2018)

Time-distance helioseismology,
MDI & HMI data, at the surface,
1996-2017

1.21

Figure 3c of Gizon, Cameron,
Pourabdian, Liang, Fournier,
Birch and Hanson (2020)

Time-distance helioseismology,
MDI and GONG data, at the
surface, 1996-2019

Ì1.0-Ì1.2

Figure 1a of González
Hernández et al. (2008)

Ring-diagram analysis, GONG
data, at 3.1Mm, 2001-2006

Ì0.8-Ì1.4

Figure 7 of Ulrich (2010) Doppler shift, MWO data, Fe I
spectral line at 5250Å, averages
over the full cycles 22 and 23

Ì1.2

Equation (1b) and Table 1b of
Komm et al. (1993)

Magnetic feature tracking, NSO
magnetograms, 1978-1990

[0.42, 0.66]

Equation (9) of Hathaway and
Rightmire (2011)

Small magnetic elements track-
ing, MDI magnetograms, 1996-
2010

0.51

Figure 6 of Mahajan et al.
(2021)

Magnetic feature tracking, MDI
& HMI magnetograms, 1996-
2020

Ì0.95

Wang, Robbrecht and Sheeley
(2009)

Applied in SFT simulations ÿ

Wang (2017) Applied in SFT simulations 2.17
van Ballegooijen, Cartledge
and Priest (1998); Cameron
et al. (2016); Bhowmik and
Nandy (2018); Jiang et al.
(2018)

Applied in SFT simulations 0.46

Whitbread, Yeates and
Muñoz-Jaramillo (2018)

From optimisation, applied in
SFT simulations

0.43

by Nagy, Lemerle, Labonville, Petrovay and Charbonneau (2017) and Whitbread et al. (2018). Jiang, Song, Wang and
Baranyi (2019) for the first time demonstrate that the evolution of a complex AR, i.e., �-spot like AR12693, could be
significantly di�erent from the (tilt) BMR approximation. An initial strongly positive dipole moment could end up with
a strongly negative value. The importance to include the realistic configuration of complex sunspot groups was further
verified by Yeates (2020) and Wang, Jiang and Wang (2021). The di�erence between the realistic configuration and
the BMR approximation results from the mechanism mentioned above. That is, the flux at lower latitudes contributes
more to the axial dipole strength than that at higher latitudes since the cross-equatorial flux determines the contribution
to the axial dipole field.

Beside the stochastic property, sunspot emergence shows systematic properties that stronger cycles tend to have
higher mean latitudes (Li, Wang, Zhan, Yun, Liang, Zhao and Gu, 2003; Solanki, Wenzler and Schmitt, 2008; Jiang,
Cameron, Schmitt and Schüssler, 2011) and lower tilt angle coe�cients, which exclude the latitudinal dependence of
the tilt angles (Dasi-Espuig, Solanki, Krivova, Cameron and Peñuela, 2010; Jiao, Jiang and Wang, 2021). Jiang (2020)
demonstrates that the systematic change in latitude and tilt plays the same important role in modulating the polar field
generation. By including both forms of nonlinearities resulting from the cycle-dependent mean latitudes and tilt angle
coe�cients of sunspot groups as the source term in SFT simulations for multiple cycles, Cameron, Jiang, Schmitt and
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Schüssler (2010) and Bhowmik and Nandy (2018) obtained the regular polar field reversal. This provides a piece of
evidence that the additional term of the radial di�usion proposed by Schrijver, De Rosa and Title (2002) is not required
in the SFT process.

In addition, Cameron et al. (2010) and Bhowmik and Nandy (2018) multiplied a factor of 0.7 to the tilt to mimic
the e�ects of the near-surface inflows toward sunspot groups when they got the regular polar field reversal. Martin-
Belda and Cameron (2017) show that inflows towards active regions are a potential non-linear mechanism modulating
the solar cycle. Inflows reduce the axial dipole strength at the end of the cycle by 30% with respect to the case
without inflows in cycles of moderate activity (Jiang, I�ik, Cameron, Schmitt and Schüssler, 2010). This ratio varies
by 9% from very weak cycles to very strong cycles. Inflows might be responsible for the anti-correlation between the
tilt coe�cient and the cycle strength. So in SFT simulations of multiple cycles inflows might not be required if the
cycle-dependent mean tilt angle coe�cients of sunspot groups are included.

For the initial magnetic field distribution at the start of the simulations, the analytic profile of the surface large-
scale field distribution is usually used when simulations start from cycle minima. The observed synoptic maps are used
for the cycle predictions. We will demonstrate that the low latitude flux distribution in magnetograms has significant
e�ects on the surface flux evolution in Section 4.

2.2. Flux transport dynamo models
The success of the SFT models in 1980s led to the birth of the FTD models in 1990s (Wang, Sheeley and Nash,

1991; Choudhuri, Schussler and Dikpati, 1995; Durney, 1995). During the past decades FTD models are the workhorse
of the understanding of the solar cycle. The equations for the axisymmetric model using spherical coordinates (r, ✓,�)
are

)A
)t

+ 1
r sin ✓ (vp � ()(r sin ✓A) = ⌘

0
(2 * 1

r2 sin2 ✓

1
A + ↵B (3)

)B�

)t
+ 1

r

⌧ )
)r

(rvrB�) +
)
)✓

(v✓B�)
�
= ⌘

0
(2 * 1

r2 sin2 ✓

1
B�

+r sin ✓(Bp � ()⌦ + 1
r
d⌘
dr

)
)r

(rB�), (4)

where B�(r, ✓, t)e� and Bp = ( ù [A(r, ✓, t)e�] correspond to the toroidal and poloidal magnetic field, respectively.
The large-scale flow fields include the meridional flow vp = �rer + �✓e✓ and di�erential rotation ⌦e�, usually both of
which are time independent in FTD models.

The ↵-term of Eq.(3) is the poloidal field source term, which corresponds to the simplified profile of the BL process.
It describes the emergence and decay of the tilt sunspot groups over the solar surface. Since the term is observable, it
provides the possibility for the models to be applied in the solar cycle prediction. Some FTD dynamo models include
an additional ↵-term working at the base or the bulk of the convection zone for two possible reasons. One is that
some FTD models prefer the quadrupolar solution (e.g., Dikpati and Charbonneau, 1999). The additional ↵-term helps
to get the solar-like dipolar solution (e.g., Dikpati and Gilman, 2001). Another group (Passos, Nandy, Hazra and
Lopes, 2014; Hazra, Brun and Nandy, 2020) argued that the BL-type FTD models are not self-excited. The additional
poloidal field source e�ective on weak fields is necessary for the self-consistent recovery of the sunspot cycle from the
Maunder-like grand minima. Xu and Jiang (1982); Eddy (1983); Wang and Li (2019); Arlt and Vaquero (2020) show
that there were naked-eye sunspots recorded through the whole Maunder minimum. The naked-eye sunspots indicate
that there were sunspots, even big spots, emerged on the Sun through the Maunder minimum. Moreover, the additional
↵-term could be physically unavoidable, as in the low Rossby number environment of the deep convection zone, any
up- or downflow tends to acquire a swirl and convert advected poloidal and toroidal fields into each other. But they
might not contribute to the net toroidal flux in each hemisphere for sunspot emergence since Cameron and Schüssler
(2015) demonstrated that the dipole field generated by the decay of active region is su�cient to generate the toroidal
flux emerging in the course of the cycle. Hence the additional ↵-term in a BL-type FTD model might not be required.

In most FTD models, the toroidal field is generated in the tachocline, so that the generation layers of the poloidal
and toroidal fields are spatially segregated. The transport parameters, namely, the meridional flow vp and turbulent
di�usion ⌘ are required by the FTD models. The time delay provides the other advantage of the FTD models to be
applied in the cycle prediction. Recently, Zhang and Jiang (2022) develop a new BL-type solar dynamo operating
in the bulk of the convection zone to meet the requirement in the progress in understanding fully convective late-M
dwarfs.
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The main constraint on the turbulent di�usivity is given by the mixing length theory, which shows that the di�usiv-
ity is in order of 1013 cm2s*1. With such strong di�usivity, FTD simulations cannot yield sustainable magnetic cycles
(Muñoz-Jaramillo, Nandy and Martens, 2011). Hence di�erent assumptions on the strength of turbulent di�usivity in
the bulk of the convection zone were made in di�erent models. The assumed values are usually much lower than the
expected value. The di�usivity used in the prediction of Dikpati et al. (2006) and Dikpati and Gilman (2006) is in the
range 1010-1011 cm2s*1. The prediction model of Choudhuri et al. (2007) and Jiang et al. (2007) used di�erent di�u-
sivities for the poloidal and toroidal field, which are 2.4ù1012 cm2s*1 and 4ù1010 cm2s*1, respectively. The dynamo
model was based on Chatterjee, Nandy and Choudhuri (2004), who argue that within the main body of the convection
zone, the action of turbulent di�usivity on the strong toroidal field is considerably suppressed. The strong di�usivity
for the poloidal field also accounts for a solar-like dipolar solution in such kinds of models since the strong di�usivity
promotes the couple of two hemispheres.

In the FTD models, the meridional flow plays an essential role. Its strength dominates the cycle period. And its
equatorward branch is regarded to be responsible for the equatorward migration of the toroidal field. In Section 2.2
we show the divergences in the surface poleward flows measurements. Its internal structures including the penetration
depth, the location of the return flow and so on, are more controversial (Zhao, Bogart, Kosovichev, Duvall and Hartlep,
2013; Schad, Timmer and Roth, 2013; Rajaguru and Antia, 2015; Gizon et al., 2020). The meridional flow combined
with the turbulent di�usion determines the so-called magnetic memory, which means how many of the following
cycles show the e�ect of the current polar field. The di�erent assumptions of the two transport parameters lead to
di�erent magnetic memories (Yeates, Nandy and Mackay, 2008). A strong turbulent di�usivity for the poloidal field
(e.g., Chatterjee et al., 2004) or a fast equatorward meridional flow (>Ì 4.5ms*1) at the toroidal field location (e.g.,
Lemerle and Charbonneau, 2017) can lead to the correlation between the polar field and the subsequent cycle strength,
which is consistent with the observations. Recently Kumar, Karak and Vashishth (2021) found that the memory of the
polar field changes from multiple to one cycle with the increase of the supercriticality of the dynamo, and the memory
is independent of the importance of various turbulent transport processes in FTD models.

3. Comparison among 7 physics-based prediction models of cycle 25
3.1. Main ingredients of the prediction models

In all physics-based cycle 25 predictions that we will compare, the surface sunspot emergence provides the poloidal
seed field for the future cycle, which means that all models work in the framework of the BL-type dynamo. The surface
poloidal field, which is assumed to be purely radial, Br(RÊ, ✓,�, t), is the key observable parameter to determine the
next cycle strength. With the assumption of the axisymmetric property of Br, the time evolution of the longitudinal
averaged photospheric synoptic magnetograms,

⇣
Br(RÊ, ✓, t)

⌘
, is the data which have the most direct connection with

the physics-based prediction models. Upper panel of Figure 1 shows
⇣
Br(RÊ, ✓, t)

⌘
from 1976 to the present based

on the Wilcox Solar Observatory (WSO) 1. The polar fields are extrapolated based on the method shown in Guo et al.
(2021) Hereafter we refer to the quantity relevant to observations and used by the physics-based prediction models as
the predictor. Since observations have shown that the field around the minima of the activity cycle is essential, some
models only consider the surface large-scale field at cycle minimum,

⇣
Br(RÊ, ✓, tmin)

⌘
. Some models only consider

the polar component of the poloidal field, namely, the polar field. Since the definition of the polar cap is a little bit
arbitrary, the axial dipole strength D(t), which is defined as

D(t) = 3
2  

⇡

0
ÍBrÎ (RÊ, ✓, t) cos ✓ sin ✓d✓, (5)

is also frequently used. In the literate D(t) is usually referred as the axial dipole moment (e.g., Wang et al., 1991). It
actually is the amplitude of the coe�cient of the Y 0

1 term in a spherical harmonic expansion ofBr(RÊ, ✓,�, t) (Petrovay,
2020). The first ingredient that contributes to the di�erence among di�erent prediction models are the four predictors
mentioned above, i.e., the observed

⇣
Br(RÊ, ✓, t)

⌘
,
⇣
Br(RÊ, ✓, tmin)

⌘
, polar field at cycle minimum, and axial dipole

strength at cycle minimum.
Besides the di�erent predictors, prediction models di�er from each other in the following three ingredients: (1)

how to get the predictor, (2) how to apply the predictor in the prediction, and (3) what to predict.
1http://wso.stanford.edu/
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Figure 1: Time evolution of the longitudinal averaged photospheric magnetic field (upper panel) from WSO, sunspot
number (black curve), northern (red curve, lower panel) and southern polar field (blue curve, lower panel) from WSO.

How to get the
predictor Predictor How to use the

predictor What to predict

Axial dipole 
field at cycle minimum 

SFT simulation 
+ obs.

< > 

< >

Polar field at cycle
minimum

FTD simulation

   Observed correlation
between the predictor

and 

obs. correlation + 
 empirical relations

cycle 25 amplitude

��cycle 25 profile
�LQFOXGLQJ�F\FOH�GXUDWLRQ�

cycle 25 profile 
with uncertainty

FTD simulation 
+ obs. < >

Figure 2: Four key ingredients of the physics-based prediction models (top line) and different methods to derive each
ingredient in the physics-based predictions.

SFT simulations provide an e�ective way to get the predictor, e.g., polar field or axial dipole strength at cycle
minimum. The direct or indirect observed synoptic or synchronic map Br(RÊ, ✓,�, t0) at a time t0 before the cycle
24/25 minimum is used as the initial condition. After getting the polar field (or axial dipole strength, PFn) at the
cycle 24/25 minimum, the correlation between it and the subsequent cycle strength (Sn+1) can be used to predict the
subsequent cycle strength. But the profile of the cycle cannot be derived based on the correlation. Since empirical
relations between the cycle amplitude and cycle shape are available, some prediction models further apply the empirical
relations to predict the shape of the subsequent cycle, even including uncertain ranges at di�erent phases of cycle 25.

FTD models provide another e�ective way to get the predictor. Some models continuously assimilate the
⇣
Br(RÊ, ✓, t)

⌘

into FTD simulations until the prediction timing. Some models just use the observed
⇣
Br(RÊ, ✓, tmin)

⌘
as the initial

condition. The corresponding toroidal field from FTD models gives the prediction of the cycle 25 profile, including
the cycle duration. But usually the predicted cycle period does not change with the cycle amplitude since dynamo
models have fixed cycle period.

Figure 2 summarizes the four key ingredients of physics-based predictions and di�erent methods to derive each
ingredient. In the next subsection, we concentrate on comparisons and analysis of the di�erences among the 7 available
physics-based predictions of cycle 25 especially based on the four ingredients. The 7 models are: (1) Cameron et al.
(2016), hereafter CJS16, (2) Hathaway and Upton (2016), hereafter HU16, (3) Iijima et al. (2017), hereafter IHI17,
(4) Jiang et al. (2018), hereafter JWJ18, (5) Bhowmik and Nandy (2018), hereafter BN18, (6) Labonville et al. (2019),
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Figure 3: Comparisons of different methods used by 7 physics-based cycle 25 predictions.

hereafter LCL19, (7) Guo et al. (2021), hereafter GJW21. A summary and comparison of the 7 models is presented in
Figure 3.

3.2. The seven prediction models
3.2.1. GJW21

To verify whether the success of the dynamo-based prediction model developed for cycle 24 (Jiang et al., 2007) is
repeatable, GJW21 apply the method to the cycle 25 prediction. The same di�usion-dominated FTD model developed
by Chatterjee et al. (2004) is utilized. The predictor in the prediction model is the observed WSO longitudinal averaged
photospheric synoptic magnetograms at cycle minimum,

⇣
Br(RÊ, ✓, tmin)

⌘
. Since cycle 23 has the average cycle am-

plitude based on sunspot records since 1874, cycle 23 is used as reference to calibrate the model. That is, the averaged⇣
Br(RÊ, ✓, t)

⌘
of three-year intervals before the cycle 22/23 minimum is regarded as the average strength correspond-

ing to the result in that phase of the dynamo. The vector potential A in Eq.(3) is derived based on
⇣
Br(RÊ, ✓, tmin)

⌘
.

Its values at the cycle 22/23 minimum are used to calibrate the toroidal field strength of the dynamo model.
During every cycle minimum, the dynamo simulation is corrected based on values of

⇣
Br(RÊ, ✓, tmin)

⌘
for every

grid point above 0.85RÊ and then is resumed without interruption until the next cycle minimum. When the toroidal
field at the tachocline exceeds a critical value, a corresponding sunspot emergence at the surface is given, so that the
time evolution of the whole cycle 25 could be predicted by this method. The predicted rising phase and amplitude
vary with the assimilated poloidal field strength. The decline phase and the cycle period do not depend on the input.
Hence, although the prediction can give the profile of the cycle, the actual focus of the prediction model is just the
cycle amplitude.

3.2.2. CJS16

To apply method used by GJW21, one must wait until the cycle 24/25 minimum to carry out the predictions using
the observed data at the cycle 24/25 minimum. Since SFT models can reproduce the evolution of the solar surface
magnetic field well, CJS16 make the first predict the polar field at the cycle 24/25 minimum with the SFT model about 4
years before the cycle 24/25 minimum. With this method, the prediction window can be extended to a few years before
a minimum. The axial dipole strength is the predictor of the method. SFT models are used to get the predictor and
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then the correlation between the predictor and the subsequent cycle strength is used to estimate the cycle 25 strength.
The method can only predict the range of cycle 25 strength, the uncertainties of which mainly result from the intrinsic
randomness in sunspot emergence and in the assimilated magnetograms.

There are two key ingredients of the SFT simulations. One is the initial condition from observations for the SFT
modeling. The other is to predict the BMR emergence during the remaining time of cycle 24 and then assimilate
it as the flux source into the SFT model. The initial field of CJS16 is the observed synoptic magnetograms from
SDO/HMI. The error due to the observed magnetograms is included in the final error estimates. CJS16 synthesize the
BMR emergence based on the statistical relations given by Jiang et al. (2011) using 50 random realizations, so that the
random components in number, tilt, latitude, and area of emerging BMRs are incorporated. Thus the uncertainty of
the axial dipole strength at the end of the cycle minimum can be estimated.

3.2.3. HU16

HU16 also use an SFT model to predict the Sun’s axial dipole strength at the cycle 24/25 minimum and further
to give a prediction of cycle 25 amplitude based on the correlation. But there are some di�erences in details in their
methods from that of CJS16.

CJS16 and HU16 used HMI synoptic magnetograms and synchronic maps as the SFT initial condition, respectively.
The synchronic maps are constructed by using evolving supergranules and the observed axisymmetric flows to transport
flux with data assimilated from HMI at 60 min intervals (Upton and Hathaway, 2014). The synchronic maps could have
some di�erences, especially around the equator, from HMI synoptic map at a given time. Since we have shown that
the low latitude flux plays an essential role in the polar field evolution, using di�erent maps can result in a significant
di�erence in the prediction of the polar field at the cycle minimum. This will be demonstrated in Section 4.

The second di�erence between CJS16 and HU16 is the representation of the BMR emergence during the remain-
ing time of the ongoing cycle. HU16 used cycle 14 as a representation of BMRs that would appear in 2017-2020.
Only randomness in BMRs’ tilt was considered. Although solar cycle shapes seem to form a family of curves well
characterized by a single parameter, i.e., cycle strength Sn (Waldmeier, 1955), the random processes involved in the
flux emergence cause the scatter distributions of BMRs in their areas, latitudes, and tilts. An occasional emergence of
big spots near the equator with large tilts could have significant e�ects on the polar field (Jiang et al., 2014; Nagy et al.,
2017; Wang et al., 2021) as we have mentioned in Section 2.1. In contrast, CJS16 synthesized the BMR emergence
based on the statistical relations using random realizations.

The third di�erence between CJS16 and HU16 is the way to deal with the convective motions and meridional
flow. CJS16 did not investigate e�ects of the variation in the two ingredients on the results, and they used the constant
turbulent di�usivity approximation of the convective motions. HU16 incorporated the variations in the convection
pattern in their model by eight di�erent realizations based on the changes in the spectral coe�cients produced by
the axismmetric flows. Furthermore, HU16 also included the cycle-related variation in the meridional flow. But their
results show that the variation in the axial dipole strength caused by the Joy’s law variation is large enough to overpower
the variation due to changes in the meridional flow and the convective motions.

3.2.4. IHI17

IHI17 suggest that the axial dipole strength becomes approximately constant several years before each cycle min-
imum based on analysis of photospheric synoptic magnetograms of cycles 21-23. They further provide a piece of
evidence that the time variation of the observed axial dipole strength agrees well with that predicted by their SFT
model without introducing new emergence of magnetic flux. Hence they took a synoptic magnetogram in 2017 as
the initial condition for an SFT simulation neglecting new flux emergence to predict the axial dipole strength in 2020.
They suggest that the amplitude of cycle 25 is even weaker than cycle 24 based on the predicted axial dipole strength.
As a whole, a major di�erence of the method from CJS16 is that the contribution of the sunspot emergence during the
last few years of a cycle to the axial dipole strength at the cycle minimum is ignored by IHI17.

Based on Figure 9 of Jiang et al. (2018) and our latest update, the dipole moment changes �D for the last 3 years
of cycles 21-24 minima are 0.01 G, -0.47 G, -0.41 G, and 0.08 G, respectively. They correspond to the di�erence
between axial dipole strength at a cycle minimum D(tmin) and that of three years before a minimum D(tmin*3yr), i.e.,
�D=D(tmin)-D(tmin*3yr). The relative changes are 0.0%, -13.3%, -23.4%, and 4.73%, which are not large variations.
However, the 4 cycles only correspond to 4 random realizations of magnetic flux emergence. Figures 3g, 3h, and 3i
of Jiang (2020) show the time evolution of axial dipole strength of 3 sets of synthesized cycles with amplitudes of 70,
180, and 280, respectively. Each of them represents a typical weak, medium, and strong cycle. For each case, there
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Table 2
A summary of the axial dipole strength changes for the last 3 years of observed and synthesized cycles.

Cycle Dipole strength change (�D,
in G)

Percentage of the change

Observed cycle 21, Sn =232 0.01 0.0%
Observed cycle 22, Sn =213 -0.47 -13.3%
Observed cycle 23, Sn =181 -0.41 -23.4%
Observed cycle 24, Sn =115 0.08 4.73%
Synthesized cycles, Sn =280 0.29±0.48 -
Synthesized cycles, Sn =180 0.80±0.47 -
Synthesized cycles, Sn =70 1.12±0.52 -
1 �D=D(tmin)-D(tmin*3yr), where tmin is a cycle minimum.
2 The third column is calculated by �D/D(tmin).
3 Sn is the maximum value of the monthly averaged sunspot number.
4 The synthesized cycles are from Figure 3 of Jiang (2020). The average value and standard deviation

are calculated based on 100 realizations for each cycle strength.

are 100 random realizations. For the weak cycle with the cycle amplitude of 70, the maximum increase and decrease
of dipole moment during the last 3 years are 2.28 G and -0.21 G. The average value and the standard deviation over
100 realizations are 1.12±0.52 G. For the medium cycle with the cycle amplitude of 180, the maximum increase and
decrease are 2.3 G and -0.22 G. The average value and the standard deviation are 0.8±0.47 G. For the strong cycle with
the cycle amplitude of 280, the maximum increase and decrease are 1.55 G and -0.61 G. The average value and the
standard deviation are 0.29±0.48 G. An average dipole moment at cycle minimum is about 3.5 G. Hence the variation
of the dipole moment due to the flux emergence during the last 3 years of a cycle can be above 60% of the value at
cycle minimum, especially for a weak cycle. The results of the observed cycles, cycles 21-24, are consistent with the
property of a large number of synthesized cycles. A summary of the dipole moment changes for the last 3 years of
observed and synthesized cycles is presented in Table 2.

The synthesized cycles indicate that flux emergence 3 years before cycle minimum could have large e�ects on
the axial dipole strength at cycle minimum. They cannot be neglected when we make the cycle prediction before a
cycle minimum. Moreover, past attempts have shown that the polar field precursor methods have large uncertainties
and could fail (e.g., Schatten and Pesnell, 1993) if used too early compared to cycle minimum (Svalgaard, Cliver and
Kamide, 2005).

3.2.5. JWJ18

JWJ18 also predict the subsequent cycle strength by predicting the dipole moment at cycle minimum using an
SFT model. But JWJ18 can make the prediction at any phase of a cycle when it has been ongoing for more than
three years. Furthermore, JWJ18 put emphasis on investigating the stochastic mechanisms and assessing their e�ects
on the uncertainty of the prediction. They can predict not only the cycle strength with its uncertainty but also the
possible shape of the future cycle. The shape of a solar cycle, i.e., the time evolution of the sunspot number, has
systematic and random components. The cycle strength Sn determines the systematic component of solar cycle shapes
including the rising and maximum phases. As for the decline phase, all cycles decline in the same way on average
as suggested by Cameron and Schüssler (2016). The random component depends on the cycle phase. During the
maximum phase, the relative uncertainty is small. The properties of sunspot emergence, e.g., area, tilt, and latitude are
also cycle-amplitude dependent. They also have random components, which are measured based on RGO sunspot area
data set and Kodaikanal and Mount Wilson sunspot tilt angle data sets (Jiang et al., 2011). These random components
significantly a�ect the predictability of the solar cycle. With these empirical relations, they can predict the solar cycle
profile over one cycle with uncertainties.

3.2.6. BN18

BN18 employ both the SFT model and the FTD model for the prediction. They first use an SFT model to get the
radial field evolution over the solar surface

⇣
Br(RÊ, ✓, t)

⌘
from 1913 to 2016. After that, they synthesize the sunspot

emergence from 2016 (when the work was done) to 2020 (the cycle 24 minimum) to get the possible polar field at the
cycle 24 minimum. Then at each cycle minimum they assimilate the surface radial field into their FTD model. Finally
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they give a prediction of the yearly mean sunspot number at the maximum of solar cycle 25. It is 118 with a predicted
range of 109-139.

To get the century-scale radial field evolution they use SFT simulations. The parameters of their SFT model and the
way to deal with the flux source term are similar to what Cameron et al. (2010) did. A major di�erence between the two
studies is whether the simulations could reproduce observed cycle variability during cycles 21-24. The period of SFT
simulations done by Cameron et al. (2010) is 1913-1976 using the RGO sunspot area dataset. Beyond 1976, the sunspot
area dataset was shifted from RGO to USAF/NOAA. A constant factor of 1.4 is suggested by the website 2 to maintain
the consistency in the area measurements from the two data sources. Cameron et al. (2010) could not reproduce the
surface poloidal field evolution consistent with observations from 1976 onwards with the 1.4 factor. Hence they limit
their study in the range of 1913-1976. In contrast, Bhowmik and Nandy (2018) only multiply the factor of 1.4 to any
active region area belonging to the USAF/NOAA database if its area is smaller than 206 micro-hemispheres. Thus
they obtain the continuous large-scale field evolution from 1913 to 2016.

The dynamo model used by BN18 includes both surface ↵-e�ect and classical mean-field ↵-e�ect in the convection
zone as an essential means for reproducing important observational features (Passos et al., 2014). Hazra et al. (2020)
show that the inclusion of the additional mean-field ↵-e�ect leads to complexities that may impact the memory and
predictability of the model.

3.2.7. LCL19

LCL19 initiate a new generation of physics-based solar cycle prediction by a coupled SFT-FTD simulation. The
interior FTD module provides the synthetic active region emergences driving the SFT module, while the SFT provides
the upper boundary condition that acts as the poloidal source term of the FTD. The predictive model consists of two
modes of operation: a “data-driven mode", using the active region database to insert active regions in the SFT module;
and a “dynamo mode", using the emergence function setting the probability and properties of active region emergence
in the SFT module. A forecast is produced by running the simulation in data-driven mode until November 2017, and
switching to dynamo mode to generate an ensemble of simulations with statistically independent realizations of active
regions emergences. The forecast is constructed from the statistical characterization of this ensemble. The model
can give the possible profiles of cycle 25, including amplitude, rising and decline phases, and northern and southern
asymmetry.

Three mechanisms and three sets of corresponding parameters are involved in LCL19. The first is the surface
flux transport (SFT) mechanism. Since the poloidal field provides the seed to the future cycle(s), the SFT module
is essential for the prediction. Cameron, Dasi-Espuig, Jiang, Isik, Schmitt and Schüssler (2013); Jiang et al. (2014);
Nagy et al. (2017) have shown that the source parameters play a dominant role in the surface field evolution. In “data-
driven mode" for cycles 23 and 24, the data sources and reduction procedure are based on Yeates et al. (2008). In
“dynamo mode", the parameters of the active region are based on statistical distributions constructed from the database
assembled by Wang et al. (1989) for cycle 21. A genetic algorithm-based optimizer is applied to specify the values
of 18 transport parameters and the source parameters (Lemerle, Charbonneau and Carignan-Dugas, 2015). Some
transport parameters actually could be constrained by observations. Although both AR datasets are determined from
NSO synoptic maps, they are subject to di�erent detection methods. Furthermore, NSO changed their observations
from the KPVT (868.8nm line) to SOLIS/VSM (630.2nm) at CR2007 (2003 August). Some observational gaps are
also presented in the original NSO synoptic maps. Active region parameters, e.g., tilt angle and latitude, are cycle-
dependent (Dasi-Espuig et al., 2010; Jiao et al., 2021), which are non-linear mechanisms to modulate the poloidal
field generation (Jiang, 2020; Karak, 2020). The factors listed above might potentially contribute to the source of the
model’s systematic errors.

The second mechanism is about the flux transport in the convection zone. The flux transport process determines
the magnetic memory, and hence a�ects the prediction result. As shown by Table 1 of Lemerle and Charbonneau
(2017), the “dynamo mode" uses a considerably higher turbulent di�usivity (Ì 1012cm2s*1) than was possible before.
The value is close to the estimation based on the mixing-length theory, see Muñoz-Jaramillo et al. (2011); Karak and
Cameron (2016) for more discussions. A rapid equatorward meridional flow is also used. Its peak value is about 6.6
ms*1, which is significantly larger than the widely adopted value 2-3 ms*1. It takes only a few years for the rapid
equatorward meridional flow to carry the polar flux into the tachocline to generate the toroidal field, as shown by
Figure 7a of Lemerle and Charbonneau (2017). The memory of the dynamo model is one cycle.

2http://solarcyclescience.com/activeregions.html
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The third mechanism is destabilization and emergence of magnetic flux tubes. This is a poorly understood compo-
nent of the solar cycle. LCL19 apply a surface flux deposition technique through masking of the deep-seated toroidal
field based on a semi-empirical emergence function. This part corresponds to the connection between the SFT and
FTD modules and provides the source of the SFT module. Except for the source term discussed in the first mecha-
nism, the threshold value (B<) above which active region emergence takes place and dynamo number (K) are two key
parameters a�ecting the model. Their values might potentially be a source of systematic errors in the prediction model.

4. A comparison of SFT initial conditions on prediction results
In the previous section, we have mentioned that CJS16 and HU16 use similar physical methods to predict the cycle

25 strength. However, they di�er not only in their exact predicted values but also in the predicted temporal variations
of the polar fields and their asymmetry. The di�erent methods to deal with the BMR emergence have been presented
there. Here we give a detailed analysis of the e�ect of SFT initial conditions on the prediction result.

What CJS16 used were the observed synoptic magnetograms provided by instruments, e.g., SOHO/MDI or SDO/HMI.
What HU16 used is the synchronic maps constructed by their advective flux transport model (Upton and Hathaway,
2014; Ugarte-Urra, Upton, Warren and Hathaway, 2015). Here, we utilize the maps of the same CR as the initial fields
of SFT simulations. We will not include any BMR emergence during the SFT simulations. And we will use the same
SFT code, which is the one used by CJS16 and is originally from Baumann, Schmitt, Schüssler and Solanki (2004).
Thus, we can concentrate on analyzing the e�ects of the di�erent initial fields on the polar field evolution.

We choose a specific timing, i.e., CR2172 (December 25, 2015-January 21, 2016) as the reference to compare.
The synchronic map of CR2172 was produced by courtesy of Lisa Upton. The map has 1024 points in Carrington
longitude by 512 points in latitude. The numerical resolution of the SFT code is 361 in longitude and 181 in latitude.
Hence we use the IDL function CONGRID to shrink the size into 361 by 181. Its distribution is shown in the upper
panel of Figure 4. It will be used as the first initial condition of the SFT simulation. HMI CR2172 synoptic map, i.e.
“hmi.Synoptic_Mr_720s.2172.synopMr.fits”, has 3600 points in Carrington longitude by 1440 points equally spaced
in sine latitude. At a given longitude the points having strength above 30 G above ±75˝ or having NaN values are
regarded as the false points. Other points are taken as the true points. We use the average value of the 5 true points
closest to the poles to fill the false points. Then we use the IDL function SMOOTH with a width value of 7 to smooth
the map. After that, we interpolate the map onto a grid uniform in latitude. Finally, we use the CONGRID function to
compress it into 361 points in longitude by 181 points in latitude. Its distribution is shown in the lower panel of Figure
4. The final map is the second initial condition of our SFT simulation.

At first sight, the upper and lower panels of Figure 4 look similar. The di�erences between the two maps are shown
in Figure 5. The di�erences concentrate in two belts. One is near the poles. Our concern here is the variation of the
dipole moment, which is proportional to sin ✓ cos ✓. The values near the poles have minor e�ects on the result. The
other di�erence is around the activity belt, especially within ±20˝ latitudes.

In the following we do SFT simulations with the code used by CJS16 to show the e�ects of the initial magnetograms
on the dipole strength evolution. We take the same profiles of the transport parameters, i.e., turbulent di�usion, merid-
ional flow, and di�erential rotation in the SFT model as CJS16 did. The two maps shown in the upper and lower panels
of Figure 4 are taken as the initial fields of the two SFT simulations, respectively. We run each SFT simulation for 4
years, that is, until the end of cycle 24.

Figure 6 shows the time evolution of longitudinally averaged solar surface magnetic field ÍBrÎ. Results from the
synchronic map (upper panel) show the presence of surges of leading polarity propagating towards the poles, the surge
on the southern hemisphere being particularly strong. It is also apparent that the surges in the upper panel (synchronic
map case) are much stronger than in the lower panel (synoptic map case). These surges must have the e�ect of reducing
the polar fields especially in the South, and especially in the synchronic map case.

This expectation is confirmed by the left panel of Figure 7, which shows the comparison of the polar field evolution
for the two cases. The polar field is defined as the average of ÍBrÎ over 60˝ and 75˝ in latitudes. Although there are
di�erences in the flux distributions near the pole regions between the two input maps, as shown in Figure 5, the
di�erence almost has no e�ect on the polar field evolution since it is defined lower than ±75˝. The right-hand panel
shows the time evolution of the corresponding axial dipole strength calculated based on Eq.(5). At the beginning of the
simulations, the two maps show similar polar field strengths. The dipole moment from the synchronic map (red curve)
is slightly lower than that from the HMI synoptic map (black curve) due to di�erent initial magnetic flux distributions.
The surges originating near the equator reach the polar areas in about one year in the Southern hemisphere and about
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Figure 4: Comparisons of magnetograms at CR2172 (December 25, 2015-January 21, 2016) used by different SFT-based
solar cycle predictions. Upper panel: synchronic map provided by Lisa Upton. Lower panel: synoptic map from SDO/HMI
with interpolation to be equal space in longitude and latitude.
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Figure 5: Difference between the maps shown in the upper and lower panels of Figure 4.

1.5 years in the northern hemisphere. Due to the di�erent strengths of these surges in the two cases considered, the two
curves representing polar fields start to deviate from each other. At the end of cycle 24, the southern polar field from
the synchronic map (red solid curve) is strikingly weaker than that from the HMI synoptic map (black solid curve).
Similarly, the northern polar field from the synchronic map (red dashed curve) shows a stronger decrease than that from
the HMI synoptic map (black dashed curve). Eventually the two initial maps, which seem similar, give rise to starkly
di�erent polar field strengths and dipole moments at the end of the cycle, the dipole moments di�ering by Ì 30%.

The experiment reveals that the initial conditions play a dominant role in the physics-based predictions, in which
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Figure 6: Time evolution of the longitudinally averaged magnetograms derived based on the SFT simulations using the
synchronic map (upper panel) and synoptic map (lower panel) of CR2172 as the initial conditions, respectively. No flux
emergence during the simulation time period, i.e., 2016-2020, is included.
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Figure 7: Comparisons of the time evolution of the polar field (left panel, southern/northern pole in solid/dashed curves)
and axial dipole strength (right panel) from the two SFT simulations using the synchronic map (red curves) and synoptic
map (black curves) of CR2172 as the initial conditions, respectively.

the axial dipole strength at cycle minimum determines the subsequent cycle strength. Wang et al. (2021) suggest
the mathematical deduction and algebraic quantification of an AR’s contribution to the final dipole moment, i.e., the
dipole moment at the cycle minimum. The deduction and algebraic quantification can be extended to the synoptic
and synchronic magnetograms since the SFT model is linear. The contribution of an arbitrary magnetogram to the
final dipole moment is a linear addition of the contribution of its smaller parts. The di�erent fluxes around the equa-
tor significantly a�ect the predicted axial dipole strength at the cycle minimum. Since the prediction is sensitive to
initial magnetograms, the measurement errors in magnetograms bring uncertainty to the prediction. Cameron et al.
(2016); Jiang and Cao (2018) are the only prediction models that include e�ects of the measurement errors in magne-
tograms. But they only analyze the e�ects of the net flux on the uncertainty. E�ects of other measurement errors in
magnetograms, e.g., center-to-limb noise variation, deserve to be further investigated.
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5. Conclusions and discussion
In the paper we have compared 7 physics-based prediction models of cycle 25. Four of them rely on SFT models to

obtain the axial dipole strength at the cycle 24/25 minimum. The di�erences among predictions of this type concentrate
on three aspects. The first one is the choice of the initial conditions for the SFT models, e.g., synoptic maps from
SDO/HMI observations or synchronic maps synthesized by models. The di�erent flux distributions, especially near the
equator, significantly a�ect the predicted axial dipole strength at cycle minimum. The second di�erence is the way to
represent future flux emergence up to the next minimum: no flux emergence, random realizations based on empirically
derived statistical relations, or using active regions from cycle 14. The di�erence in treating flux emergence a�ects
both the amplitude and uncertainty range of the cycle 25 prediction. The third di�erence is how to obtain a cycle 25
prediction based on the axial dipole strength at the cycle 24 minimum. One way is only based on the correlation between
the polar field at cycle minimum and the subsequent cycle strength. The other way is based on both the correlation and
the empirical relations between cycle shapes and cycle amplitudes. The third di�erence determines whether only the
cycle amplitude or the whole cycle shape can be predicted. Two further models assimilate the surface poloidal field at
cycle minimum into FTD models to get the cycle 25 prediction. These two models di�er in the assimilated datasets.
One is from direct magnetic field observations, which just cover 4 entire cycles. The other is from SFT simulations for
12 cycles. Finally, one model makes the first attempt to apply the coupled surface poloidal field evolution with an FTD
to the solar cycle prediction. The axial dipole strength or polar field at cycle minimum is essential to all physics-based
predictions.

Reviews on solar cycle predictions usually place emphasis on the comparisons of prediction results. In contrast, in
this review we do not address the predicted values for the amplitude of cycle 25 from di�erent models for the following
reasons. First, other available reviews, e.g., Figures 4 and 5 of Nandy (2021) have given a complete comparison of
the predicted cycle 25 strengths. Secondly, and more importantly, here we focus on physics-based prediction models.
There are still many open questions about physical mechanisms underlying the solar cycle and solar interior dynamics,
see Section 8 of Charbonneau (2020) for more details. While all 7 physics-based predictions considered are based on
the BL mechanism, they di�er in many of their details, and some parameters are often optimized to fit the observations.
Furthermore, even if the BL mechanism captures the essence of the solar cycle, we do not have the perfect surface
magnetic measurements. The imperfect magnetograms as the assimilated data into the prediction models must bring
uncertainties, which are not well evaluated. Our preliminary test in Section 4 has shown the large e�ects of the
observations on predictions. Other well-known ingredients of the solar dynamo, e.g., the meridional flow at the surface
are still controversial. This is demonstrated in Table 1. Hence a successful prediction does not mean that the physics-
based prediction model is ideal and captures all the physics of the solar cycle. On the other hand, a failed model may
still valuably contribute to understanding the solar cycle.

In summary, the physics-based prediction of a solar cycle is still in its infant stage. It provides an e�ective way to
verify our understanding of the solar cycle. The value of a prediction model cannot be simply judged by the consistency
of a prediction result with the observation. But if cycle 25 is confirmed as a medium cycle in a few years, it will add
a further piece of evidence that the polar field determines the subsequent cycle and that the BL mechanism is at the
heart of the solar cycle.
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